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Abstract
The conformation and drift properties of a telechelic chain moving through a
porous host of randomly distributed static obstacles are studied using Brownian
dynamics simulation for a Grest–Kremer bead-spring model of polymer. Static
chain conformations exhibit non-monotonic behaviour as a function of the
impurity density ρimp at zero bias. The chain initially shrinks due to an entropic
barrier as the density of the obstacles ρimp is increased. In the presence of the
obstacles it requires only a tiny bias for a long chain to be mostly stretched. We
then study the drift property of the chain as a function of the bias and impurity
density. The drift velocity of the chain saturates beyond a threshold bias Fcrit

x .
This observation can be useful in designing DNA sequencing methods based
on electrophoretic mobility.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transport of polymers through nanochannels and gels [1, 2] is an active field of research.
A deeper understanding of the mechanism of transport and chain mobility will lead to useful
applications in the detection of sequences in DNA/RNA. A telechelic ionomer is a polymer
which carries charges either in one or both ends. This is a special case of associative polymers
which form thermoreversible gels [3]. We consider a telechelic chain with charge at one end.
The chain can be dragged with an applied electric field. We ask how the static conformations are
changed in the presence of randomly distributed obstacles. We then extend these calculations
to include a bias, and study how the connectivity and flexibility influences the mobility of the
chain.

The problem is a special case of a much broader field: namely, the behaviour of a
polymer chain in random media [1, 2]. At a fundamental level the study of a polymer chain in
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disordered media stands as a testing ground for the extension and applicability of the theory
of reptation [4, 5]. At the same time the flow property of a polymer chain can be immensely
useful in understanding many important processes, for example length dependent fractionation
of DNA via gel electrophoresis, complex polymer mixtures, hazardous waste in sea, etc.

For a Gaussian chain, both the Monte Carlo (MC) [6] calculations and analytic calculations
using the replica trick [7] predict that in the presence of quenched disorder the chain shrinks
and the length dependence of the diffusion constant is different to what is predicted by the
reptation theory [4, 5]. The extension of these studies from a Gaussian chain to a self-avoiding
chain adds another dimension to the problem. For a self-avoiding chain, the competition
between the strength of the excluded volume interaction (w) and that of the disorder (v)
yields very interesting conformational and localization properties [8–10]. For a polymer
chain of length N embedded in porous media characterized by the impurity density ρimp,
the variational calculations using the replica trick [8] predict three different regimes for the
polymer conformations: while for w > v, R2

g ∼ N1.2, for w = v, the chain executes ordinary
random walk R2

g ∼ N , and for high impurity densities (v > w), the chain is localized with

R2
g ∼ ρ

2/3
imp N2/3.

The MC calculations by Muthukumar and Baumgartner [9, 10] are consistent with these
results. In contrast, a second analytic calculation using optimal fluctuation theory in terms of
a small parameter predicts [11] that for large impurity densities the conformational properties
of a chain are still described by a self-avoiding random walk. When a polymer chain moves
through a random medium it encounters cavities of different lengths. As the radius of gyration
〈Rg〉 of the chain becomes comparable to or larger than the mean pore size it encounters
entropic barriers as it passes through bottlenecks [10]. It has been argued [11] that replica
calculations relying on a single variational parameter might not be adequate to describe a more
complicated free energy landscape, justifying the need for further work to settle some of these
issues. The transport properties of a polymer chain through porous media [9, 12] reveal some
unsettled issues as well. Earlier MC calculations suggest [9] that chain dynamics in a dense
system can be different from reptation. But a more recent MC investigation of diffusion of a
polymer chain through a sea of frozen polymer chains by Yamakov and Milchev [12] indicates
that reptation is still the dominant mode of polymer diffusion in random media.

The above discussions refer to the diffusive and conformational properties of polymers
in random media. Motivated by practical problems, for example the electrophoresis of
biomolecules under an external field, these studies of neutral polymers have also been extended
to polyelectrolytes where the entire chain is charged and driven by an electric field [1]. A special
case of this variety is a telechelic polymer chain where only a block in either end of the chain
is charged, and the rest of the chain is neutral. The conformational and drift properties of these
end-labelled chains are of significant practical importance and have been studied previously
analytically, and by MC and molecular dynamics (MD) simulation methods [13–19]. In the
absence of bias, estimates of both the transverse and the longitudinal size of a stretched polymer
chain can be obtained using simple scaling arguments [4, 20]. Analytic results using the optimal
fluctuation method indicate that the transverse fluctuations of the centre of mass of a polymer
chain are similar to that of a Brownian particle and exhibit diffusive behaviour [13]. These
calculations also obtain the first order correction to the drift velocity due to impurities. A
recent MC simulation indicates that in the presence of the impurities, these scaling properties
are weakly violated [16]. The simulation data also show that there exists a critical value of the
bias beyond which a ‘jamming effect’ is observed [16].

The purpose of this paper is to examine the properties of an end-labelled telechelic polymer
chain where only the first monomer of the chain is influenced by an external force using
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a stochastic molecular dynamics simulation method [21–23], and to calculate the dynamic
properties of the chain directly from the simulation as a function of bias and impurity density.
There are some distinct advantages of carrying out MD, as opposed to MC in this particular
problem. In MD, the drift velocity and other dynamic properties can be obtained directly from
the simulation and do not require any assumptions. For large bias, the MC approach may suffer
practical difficulties, specifically in implementing the Boltzmann factor exp(−β�E), while
in MD a larger bias requires a smaller integration time step which renders the calculations
more expensive but feasible. We also study the conformational and the diffusive properties of
the chain at zero bias. Previously we have reported some properties for shorter chains [19].
Here we report results for longer chains and study other interesting quantities not reported
previously.

The salient features of our calculations are as follows. For the zero bias case, we find that
the radius of gyration 〈Rg〉 of the chain is a non-monotonic function of the impurity density
(ρimp) exhibiting a minimum. This trend was not reported in the previous MC calculations [9],
but has been observed in more recent MC calculations for a slightly different nature of the
quenched disorder [15]. This indicates that the result has more general validity for a variety
of disordered media. We calculate the Flory exponent ν using a chain length from 8 to 128 for
impurity density 0.1–0.3 and find ν � 0.6, which implies that the chain is still described by a
self-avoiding random walk (SAW) at these densities. Finally, we observe that the drift velocity
of the chain exhibits a saturation as a function of the bias. It appears that the saturation bias is
inversely proportional to the chain length N . This observation can provide useful information
in electrophoresis and other related experiments where the filtering method depends of the
mobility of the chains.

The model and numerical methods are discussed in the following section. In section 3 we
present the static and the dynamic properties of the chain. In sections 3 and 4 we summarize
the results and discuss ongoing and prospective future work.

2. Model and numerical procedure

The molecular dynamics method that we have implemented here is the same as the one
previously employed by the author [22] and very similar to the method adopted by Grest
and co-workers earlier [21]. To simulate a constant temperature ensemble, the monomers are
coupled to a heat bath and the equations of motion read as

�̈r i = −�∇Ui − � �̇r i + �Wi (t), (1)

where � is the monomer friction coefficient and �Wi (t) which describes the random force of
the heat bath acting on each monomer is a Gaussian white noise with zero mean satisfying the
fluctuation-dissipation relation

〈 �Wi (t) · �W j (t
′)〉 = 6kBT �δi jδ(t − t ′). (2)

The potential Ui consists of two parts: ULJ, and Uchain. Here ULJ is a Lennard-Jones (LJ)
potential acting between any two pair of monomers:

ULJ(r) = 4ε

[(σ

r

)12 −
(σ

r

)6 −
(

σ

rc

)12

+

(
σ

rc

)6
]

; r � rc, (3)

where rc is the cutoff distance beyond which the LJ interaction is set to be zero and r = |�ri −�r j |,
with �ri , �r j being the locations of the i th and j th monomers, respectively. The parameter ε

is the LJ energy parameter and σ is the LJ length parameter. The LJ interaction is a purely
repulsive potential if the cutoff distance rc = 21/6σ , but has an attractive part when rc = 2.5σ .
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Uchain is the finite-extendable nonlinear elastic (FENE) (anharmonic spring) potential acting
between pairs of successive monomers along a chain:

Uchain(r) = −k ln

[
1 −

(
l

l0

)2]
, (4)

in which k is the energy parameter of the potential, l is the distance between two neighbouring
monomers of the same chain, and l0 is a length parameter which describes the extension range
between two successive monomers. We have chosen k = 30 and l0 = 1.5, which make chain
crossing practically impossible [21]. We use reduced units throughout this study. The unit of
time is σ(m/ε)1/2 and the unit of temperature is ε/kB, where kB is the Boltzmann constant.
The interaction of the polymer chain with the randomly placed impurities is described by the
repulsive part of the LJ interaction. A constant force is added to the x component of the force
on the first monomer to simulate a telechelic chain.

We have integrated the equations of motion following an accurate scheme developed
by van Gunsteren and Berendsen [23] which uses a bivariate distribution of Gaussian random
numbers for the stochastic forces [24]. A very fast Gaussian random number generator [25] and
a link-cell-list [26, 27] for calculating the forces help to make the integration quite efficient.
Time steps for most of the cases were chosen to be (�τ ) of 0.01 (in reduced units) which
produced stable integration at temperatures of interest. For a large bias and long chain in
the presence of a high density of scatterer, �τ ∼ 0.0025 was necessary, which rendered the
calculations for chain length 64 and 128 time-consuming. The results that are presented here
needed the continuous operation of six Linux boxes for several months.

3. Results

We show results for chain lengths N = 8, 16, 32, 64, and 128 and for impurity densities
ρimp = 0.1, 0.2, 0.3, 0.4 and 0.5 for several values of bias Fx . Typically disorder is averaged
over 500–1000 initial configurations, which makes these computations quite time-consuming.
The computation time for chain lengths 64 and 128 are very large and the data sets are less
exhaustive compared to smaller chains. Unless explicitly shown, the error bars for the static
quantities are very small and within the width of the symbols in the figures.

3.1. Static properties of the chain: zero bias

First we show the results for the zero bias case and compare our numerical results with
those obtained from the analytic theories, as well as previous MC results [12]. Figure 1
shows the normalized radius of gyration 〈R̄g〉 = 〈Rg(ρimp)〉/〈Rg(ρimp = 0)〉 as a function
of impurity density ρimp for chain lengths N = 8, 16, 32, 64, and 128, respectively. The
ubiquitous feature is that the average size of the chain initially decreases to a minimum
value with increasing impurity density. The position of these minima for different ρimp is
a function of chain length N and shifts to a lower value for longer chains. A similar result
was found by Yamakov and Milchev for a different system where the disorder was made of an
initially relaxed and subsequently frozen network of polymer chains. Since all the interactions
considered here are purely repulsive, the origin of the observed minimum is due to the entropic
traps and barriers [10]. Imagine a situation where a chain is fully confined in a particular
cavity connected to other neighbouring cavities through bottlenecks. In this case the chain
under consideration encounters entropic barriers to wander in to the neighbouring cavities,
as explained by Muthukumar and co-workers. Now imagine that the impurities’ distances
are scaled down without affecting the chain so that the average pore size becomes smaller.
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Figure 1. Normalized radius of gyration 〈R̄g〉 at zero bias for different values of ρimp; circles,
squares, diamonds, triangles and triangles (rotated) represent chain lengths N = 8, 16, 32, 64, and
128, respectively. The curves through the points are guides to the eye. The error bars for N = 128
are large and not shown.
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Figure 2. Rg as a function of chain length N (log scale) for ρimp 0.1 (circles), 0.2 (squares), and
0.3 (diamonds). The slope of the curves is the same and gives ν � 0.65.

If the chain still could be accommodated in this particular pore it will have a smaller 〈Rg〉.
This continues until ρimp reaches ρmin

imp . For larger ρimp, the average size of the cavities cannot
accommodate the full chain and the chain stretches in between the cavities with an increased
〈Rg〉, as alluded to in the work of Panyukov [11]. This qualitatively explains the origin of the
minimum in figure 1. For very long chains, this feature will be present only at extremely low
impurity densities and, therefore, may not be observed in the simulation (N = 128). We have
calculated the Flory exponent ν (see figure 2) for various values of the impurity density ρimp

by plotting Rg as a function of chain length N . At a certain obstacle density, ρimp, the medium
creates random channels, characterized by a ‘persistent length’ which exceeds the persistent
length of the polymer chain and effectively rectifies it, thus leading to larger values of ν > 0.6.

3.2. Static properties of the chain: nonzero bias

The presence of a bias drastically alters the conformation properties of the chain. Two
appropriate quantities of interests are: (i) the ratio R = 〈R2

e 〉/〈R2
g〉, where 〈Rg〉 and 〈Re〉

represent the average radius of gyration and the end-to-end distance of the chain respectively,
and (ii) the quantity �Ryz

x = (〈Rg〉x/〈Rg〉)yz . R lies between 6 and 12 for a Gaussian and
perfectly stretched chain; �Ryz

x will be unity in the absence of a bias. These two quantities will
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Figure 3. The ratio R = 〈R2
e 〉/〈R2

g 〉 under bias for different impurity densities. Circles, squares,
diamonds, and triangles represent chain lengths N = 16, 32, 64, and 128, respectively. The lines
through the points are guides to the eye.

be able to provide sufficient information to obtain a detailed picture of the chain conformation.
For low densities of the obstacles and for shorter chains, R increases with increasing bias
without any sign of saturation. For high densities of the obstacles R becomes very quickly
insensitive to the bias. For moderate densities we find that R exhibits a maximum and a
subsequent weak decrease. We believe that this is a generic behaviour of the chain in a random
medium in the presence of a bias. The peak position is a function both of the chain length and
the bias. It is evident that the longer the chain is, the more sensitive it is to the external field.
Even for a tiny bias the longer chain has a significantly larger value of R compared to its value
in the absence of the bias. We notice that longer chains (N = 64 and 128) have a maximum
value of R ∼ 11.5. Therefore the chain is mostly stretched. For a given chain, an estimate
of Fx could be obtained from the dimensionless quantity Fx Rg/kBT . We find that for low
ρimp the chain stretching reaches a saturation for Fx RgkBT ∼ 1. Moreover, for ρimp = 0.2 the
average pore spacing r0 is ∼1.2, while the radii of gyration for N = 16, 32, 64, and 128 are
∼2.2, 3.5, 5.6, and 9.2, respectively, which are larger than r0. Therefore the ratio r0

Rg
dictates

the minimum value of Fx for which the chain is mostly stretched.
We get a more complete picture of the longitudinal and lateral dimensions of the chain

from figure 4. We notice that for moderate densities of the impurities and low bias, the chain
is not only stretched along the direction of the bias but shrinks in the transverse direction.
However, with increasing bias and impurity density, a saturation effect is observed, while with
a further increase in the bias the effect is reversed. It is worth noticing that the effect of the
impurity and the bias becomes more drastic with increasing chain length.

One may wonder to what extent the bonds are stretched when we apply a large bias. In
figure 5 we show the average bond lengths as a function of the distance from the bead which is
dragged. The stretching is within less than 1%. But we notice that chain stretching becomes
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Figure 5. Average bond lengths between successive beads from one end of the chain. The bias is
applied on the first bead.

more drastic for larger chains, rendering the calculations prohibitively large, especially for
large bias.

3.3. Dynamic properties of the chain

Finally, we show the nonlinear dependence of the velocity of the centre of mass of the chain Vd

on the bias Fx for different ρimp and N . For low ρimp, the velocity increases linearly with the
increasing bias, as expected. In this limit (Fx → 0), we find the mobility of all the chains are
roughly the same, as expected. As the bias is increased, the velocity exhibits a maximum for
intermediate values of concentrations, as shown in figure 6. It appears from figure 6 that the
critical bias Fcrit

x ∼ 1
N for ρimp = 0.2. Occasionally, at large bias, the chain can overcome the

entropic barrier and access regions of high entropic penalty from which it becomes difficult to
get out, which explains its reduced drift velocity. If we compare figure 6 with 3, we notice that
the ratio for different chain lengths beyond Fcrit

x is significantly larger than 6 which indicates
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Figure 6. Drift velocity Vdrift of chains for different impurity density and bias. The drift velocity
exhibits saturation.

that, for a large bias, the chain does not have sufficient time to meander its way around the
obstacles and encounters the repulsive barrier of the obstacle as happens in a ‘head-on’ collision
more frequently. The rest of the chain, being neutral, samples the available volume, which is
consistent with the fact that the Flory exponent ν � 0.6.

4. Discussion

In summary, we have investigated both the static and the dynamic properties of an end-labelled
telechelic polymer chain in the presence of quenched random impurities and driven by an
external field using a stochastic MD simulation method. Our numerical data show a minimum
in 〈Rg〉 with increasing density of randomness. The trend suggests that for very long chains
this effect will disappear as the position of the minimum shifts towards ρimp → 0 for longer
chains. Further systematic runs with smaller densities and longer chains will settle this issue.

In the absence of a bias, our MD data reveal several important results. For impurity
densities ρimp = 0.0–0.6, our simulation results show that the effective Flory exponent
νeff � 0.6, which indicates that the conformation of the chain at high impurity density is still
described by a self-avoiding random walk (albeit with the ‘persistent length’ of the medium,
as proposed in a paper by Panyukov). This has also been observed previously in an MC
calculation [15]. This is an important result, and is probably indicative of the limitations of
the variational calculations using the replica trick, as it predicts otherwise.

The effect of the bias is more drastic for longer chains. Therefore it seems plausible that
in the limit of very long chains and in the presence of a weak disorder, an extremely small
but nonzero bias would be sufficient to stretch the chain completely. From our simulation
data it appears that in the presence of disorder the simple scaling laws for the transverse and
the longitudinal components are violated. A more refined scaling analysis would require an
obvious additional variable r0/〈Rg〉.

The observed maximum for the drift velocity as a function of the bias is consistent with
the idea of jamming. Once the telechelic head gets stuck in a narrow channel among obstacles
and the large bias does not let it get loose, it can take a very long time to escape out of
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that region, which would explain the observed reduction of the drift velocity at large bias.
Note that the neutral tail of the polymer does not help the immobile head in this situation.
It will be worthwhile to calculate the residence time for such an event as a function of the
chain length, randomness and bias. At present we are extending our calculations to larger
chain lengths and more numerous biases and impurity densities. In particular the intermediate
density regime, where both the static and the dynamic properties exhibit extrema, are worth
investigating in more detail. Our simulation does not take into account any hydrodynamic
effects which may also play a role; however, one expects that at small free volume in the
system hydrodynamic corrections will be small. The drift of the chain in various regular and
periodic geometries may also reveals important differences when compared with the results
reported in this paper. Furthermore, the MD approach will be very desirable to take into
account the dynamic environment of the obstacles. Some of these issues are currently under
investigation and will be reported in a separate publication.
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